Biomaterials

Julia Babensee


 

Research Keywords:

Biomaterials, immunoengineering, dendritic Cells

Research Affiliations:

Research Areas:

Research Interests:

Host responses to combination products, biomaterial interactions with dendritic cells, tissue engineering for rheumatoid arthritis, targeted DNA vaccine delivery, and biomaterial-applied immunology.

Valeria Milam


 

Research Affiliations:

Research Areas:

Research Interests:

Bio-inspired colloidal assembly for multifunctional drug delivery vehicles and colloidal-based sensing.

Dr. Milam’s current research interests focus on designing and characterizing colloids functionalized with biologically-relevant macromolecules such as oligonucleotides and cellular adhesion molecules. The specific recognition between matching macromolecules such as complementary DNA strand pairs allows for programmable adhesion between either complementary particle surfaces or between complementary particle and matrix interfaces. Using a variety of biocompatible and biodegradable materials as the colloidal substrate, these biocolloids will serve as building blocks to fabricate novel material constructs ranging from stimuli-responsive hybrid materials to therapeutic delivery vehicles.

Michelle LaPlaca


 

Research Affiliations:

Research Areas:

Research Interests:

LaPlaca’s broad research interests are in neurotrauma, injury biomechanics, and neuroengineering as they relate to traumatic brain injury (TBI). The goals are to better understand acute injury mechanisms in order to develop strategies for neuroprotection, neural repair, and more sensitive diagnostics. More specifically, the lab studies mechanotransduction mechanisms, cellular tolerances to traumatic loading, and plasma membrane damage, including mechanoporation and inflammatory- & free radical-induced damage. We are coupling these mechanistic-based studies with –omics discovery in order to identify new biomarker candidates. In addition, LaPlaca and colleagues have developed and patented an abbreviated, objective clinical neuropsychological tool (Display Enhanced Testing for Cognitive Impairment and Traumatic Brain Injury, DETECT) to assess cognitive impairment associated with concussion and mild cognitive impairment. An immersive environment, coupled with an objective scoring algorithm, make this tool attractive for sideline assessment of concussion in athletic settings. Through working on both basic and clinical levels she is applying systems engineering approaches to elucidate the complexity of TBI and promoting bidirectional lab-to-clinical translation.

YongTae Kim


 

Research Affiliations:

Research Areas:

Research Interests:

Dr. Kim’s research focuses on developing biomimetic microsystems that reconstitute organ-level functions on chip and integrative control systems that allow large-scale production of therapeutic and diagnostic bio/nanomaterials. His lab develops experimental control systems and micro/millifluidic platforms, and employs computer-aided engineering to understand: (1) how cells coordinate responses to signaling cues in multicellular environments; (2) how bio/nanomaterials assemble and break in dynamically controlled fluid flows; and (3) how biological systems interact with nanomaterials with varied physicochemical properties.

Organs-on-chips that mimic the characteristics of human organs are enabling scientists to predict more accurately how effective therapeutic drug candidates would be in clinical studies without serious adverse effects and to address how multiple cells coordinate organizational decisions in response to complicated signaling cascades. Dr. Kim’s lab builds valid artificial organ-on-a-chip systems by manipulating 3D extracellular environments in time and space, utilizing the expertise in microfabrication, miniaturization, robotics, and control systems engineering, and understanding the human body’s fundamental physiological responses to mechanochemical cues. This research will help examine the behavior and interaction of multifunctional nanomaterials with biologically relevant microenvironments for rapid clinical translation of nanomedicine, thereby bringing drugs to market more quickly and perhaps even eliminate the need for animal testing.

Advanced treatment of diseases such as cancer and atherosclerosis needs controlled delivery of multifunctional nanocarriers that contain multiple drugs that can target tumors with anti-angiogenic and cytostatic agents and a diversity of imaging agents that monitor the transport in the body. Optimized integration of manufacturing nanomaterials will contribute to advanced health technology not only because of rapid clinical translation of drugs but also due to reduction of any release of harmful byproducts. Dr. Kim’s lab designs and fabricates diverse microfluidic modules for diverse syntheses of multifunctional nanomaterials and integrates the modules to establish large-scale implementation of manufacturing processes scaled to economically and industrially relevant production level. The integrative system will facilitate good manufacturing practice (GMP) production and clinical translation in pharmaceutical and biomedical industry and enable reproducible and controlled synthesis of nanoparticles at scales suitable for rapid clinical development and commercialization.

David Ku


 

Research Affiliations:

Research Areas:

Research Interests:

Dr. Ku has an active interest in peripheral vascular pathology and unsteady, threedimensional fluid dynamics. One project investigates the relative role of hemodynamics and thrombosis in vascular graft occlusion. Additional studies involve the development of a tissue-engineered vascular graft. Noninvasive magnetic resonance imaging is used to determine the hemodynamics and detect pathology in vivo. Computational solutions explore fluid mechanic variations from geometry. Another project studies the collapsible tube behavior of highly stenotic arteries.

Dr. Ku has an active interest in cardiovascular pathophysiology, unsteady threedimensional fluid mechanics, medical implants, and commercialization of university research. Basic research focuses on sudden cardiac death from platelets subjected to high shear and plaque rupture due to arterial stenosis collapse. His research extends to Translational Technology using applied biomedical engineering to impact patient care and therapy. Projects span from device design to development of bench tests to predict clinical performance. Dr. Ku teaches entrepreneurship and product development to bring technological solutions to the bedside.

Suman Das


 

Research Areas:

Research Interests:

Manufacturing, Mechanics of Materials, Bioengineering, and Micro and Nano Engineering. Advanced manufacturing and materials processing of metallic, polymeric, ceramic, and composite materials for applications in life sciences, propulsion, and energy.

Professor Das directs the Direct Digital Manufacturing Laboratory and Research Group at Georgia Tech. His research interests encompass a broad variety of interdisciplinary topics under the overall framework of advanced design, prototyping, direct digital manufacturing, and materials processing particularly to address emerging research issues in life sciences, propulsion, and energy. His ultimate objectives are to investigate the science and design of innovative processing techniques for advanced materials and to invent new manufacturing methods for fabricating devices with unprecedented functionality that can yield dramatic improvements in performance, properties and costs.

Younan Xia


 

Research Keywords:

Nanomedicine, regenerative medicine, controlled release, imaging contrast agent

Research Affiliations:

Research Areas:

Research Interests:

Disruptive technologies enabled by nanoscale materials and devices will define our future in the same way that microtechnology has done over the past several decades. Our current research centers on the design and synthesis of novel nanomaterials for a broad range of applications, including nanomedicine, regenerative medicine, cancer theranostics, tissue engineering, controlled release, catalysis, and fuel cell technology.

We are design and synthesize/fabricate novel nanomaterials that could serve as: 1) theranostic agents for cancer and other diseases; 2) multifucntional probes for cellular tracking; 3) smart capsules for site-specific, on-demand delivery; and 4) scaffolds for the repair or regeneration of tissues.

M.G. Finn


 

Research Affiliations:

Research Areas:

Research Interests:

We develop chemical and biological tools for research in a wide range of fields. Some of them are briefly described below; please see our group web page for more details.

Chemistry, biology, immunology, and evolution with viruses. The sizes and properties of virus particles put them at the interface between the worlds of chemistry and biology. We use techniques from both fields to tailor these particles for applications to cell targeting, diagnostics, vaccine development, catalysis, and materials self-assembly. This work involves combinations of small-molecule and polymer synthesis, bioconjugation, molecular biology, protein design, protein evolution, bioanalytical chemistry, enzymology, physiology, and immunology. It is an exciting training ground for modern molecular scientists and engineers.

Development of reactions for organic synthesis, chemical biology, and materials science.  Molecular function is what matters most to our scientific lives, and good chemical reactions provide the means to achieve such function. We continue our efforts to develop and optimize reactions that meet the click chemistry standard for power and generality. Our current focus is on highly reliable reversible reactions, which open up new possibilities for polymer synthesis and modification, as well as for the controlled delivery of therapeutic and diagnostic agents to biological targets.

Traditional and combinatorial synthesis of biologically active compounds.  We have a longstanding interest in the development of biologically active small molecules. We work closely with industrial and academic collaborators on such targets as antiviral agents, compounds to combat tobacco addiction, and treatments for inflammatory disease.

Muralidhar Padala


 

Biography:

An engineer by training, Dr. Padala is currently focused on studying the biomechanics and mechanobiology of heart valve disease and heart failure. He received his BS in mechanical engineering from Osmania University in India in 2004, and an MS in mechanical engineering and PhD in bioengineering from Georgia Tech in 2010. Since joining Emory and establishing his independent laboratory in 2010, his focus has been on studying in-vivo heart valve and cardiac mechanics in pre-clinical models. In 2012, he spent one year at Imperial College London on a Leducq Fondation Career Development Award. He trained under Prof. Sir. Magdi Yacoub, a pioneer in cardiac transplantation and heart valve tissue engineering.

Research Keywords:

Heart failure, cardiac valve disease, cardiovascular devices, cell and gene therapy, tissue engineering of heart valves

Research Affiliations:

Research Areas:

Research Interests:

My laboratory is interested in the pathogenesis of heart valve disease and its impact on the onset and progression of heart failure. We use rodent and swine models of heart valve regurgitation, to understand the changes in the myocardial remodeling at multiple scales. Our recent work is also focused on linking functional changes in the myocardium to detectable genomic, transcriptomic, proteomic, and metabolomic changes, and investigate the potential of using their relationship for early detection of heart failure. Some of our work also involves developing new medical devices and technologies to repair heart valves and associated heart failure.

Jeannette Yen


 

Research Areas:

Research Interests:

Focused on the study of aquatic chemical ecology, Dr. Jeannette Yen’s lab employs graduate and undergraduate students alike in the pursuit of understanding marine zooplankton interaction, behavior, morphology, ecology and reproductive strategies. Current research topics range from the study of harmful algal blooms effect on marine copepod behavior to understanding the swimming behavior and hydrodynamics.

Pages

Subscribe to RSS - Biomaterials