Biomaterials

Michael Varenberg


 

Research Areas:

Research Interests:

Dr. Varenberg is engaged with two major research domains:

• Exploration of the tribological solutions evolved in the biological world. This multinational interdisciplinary research, which involves joint work with biologists, seeks to understand and mimic the behavior of interacting surfaces in the world of animals and plants, while uncovering the biological side of adhesion, friction, lubrication and wear. Research thus far has led to development of two new types of bio-inspired surfaces, which have a strong potential to be imbedded in a variety of products in daily and industrial use.

• Development of green aspects of classical tribology. This multidisciplinary research sets problems at the interface between physics, chemistry, material science and mechanics, and aims at increasing efficiency, integrity and cleanliness of modern surface technologies. Research thus far has resulted in laying a cornerstone of a new family of mechano-chemical surface treatments, which are expected to bring eco-innovation to friction surfaces in transportation, industrial and power-generation sectors.

Saad Bhamla


 

Research Keywords:

Ultra-fast organismic physics, biological soft matter, frugal science and global health

Research Areas:

Research Interests:

The BhamlaLab explores fundamental and applied research questions through the development of new experimental tools and techniques at the intersection of soft matter, organismic physics and global health.

Ultra-fast Organismic Physics

Biologists are just starting to systematically examine ultrafast motion across species (jellyfish, mantis shrimp, trap-jaw ants), some of which achieve accelerations exceeding a million g-forces in nanoseconds. At the single-cell level, the physical biology of ultra-fast motility remains poorly understood. What is the fastest motion a single cell can achieve? How do single-cell organisms amplify power and survive repeated high accelerations? These fundamental questions guide our exploration of several non-model unicellular and multicellular organisms to uncover the principles of extreme motility at cellular scales.

Biological Soft Matter

Our bodies are composed almost entirely of soft, wet, squishy materials. How do the fundamental principles of soft matter and complex fluids enable us to grasp dynamic processes, from the self-assembly of proteins to the stretching of a spider web? We study a spectrum of biological soft matter, from the tears on our eyes to biological foams from insects, with the goal of connecting the microscale structures (lipids, proteins) to their consequences for macroscale biological function (contact lens-eye interaction, microbiome health). As engineers, we leverage this understanding for human-health applications, ranging from diagnostics and monitoring to artificial therapeutic replacements and biomedical devices.

Frugal Science and Global Health

Today, although information is free to anyone with internet, access to scientific tools and healthcare devices still has many barriers. How do we design and build tools that are scientifically rigorous, but cost a few cents on the dollar? Driven by the spirit of doing “frugal science”, we box ourselves in to find out of the box solutions for global challenges in science education, agriculture, and healthcare. Projects in this area include field-work, science outreach, and citizen-science initiatives.

Disciplines:

  • Biotechnology

  • Complex Systems

  • Materials and Nanotechnology

Scott Hollister


 

Research Keywords:

Pediatrics

Research Areas:

Research Interests:

My research interests focus on image-based computational design and 3D biomaterial printing for patient specific devices and regenerative medicine, with specific interests in pediatric applications. Clinical application interests include airway reconstruction and tissue engineering, structural heart defects, craniofacial and facial plastics, orthopaedics, and gastrointestinal reconstruction. We specifically utilize patient image data as a foundation to for multiscale design of devices, reconstructive implants and regenerative medicine porous scaffolds. We are also interested in multiscale computational simulation of how devices and implants mechanically interact with patient designs, combining these simulations with experimental measures of tissue mechanics. We then transfer these designs to both laser sintering and nozzle based platforms to build devices from a wide range of biomaterials.  Subsequently, we are interested in combining these 3D printed biomaterial platforms with biologics for patient specific regenerative medicine solutions to tissue reconstruction.

Susan Thomas


 

Research Keywords:

Immunoengineering, cancer, metastasis, immunotherapy, drug delivery

Research Affiliations:

Research Areas:

Research Interests:

Dr. Thomas’s research focuses on the role of biological transport phenomena in physiological and pathophysiological processes. Her laboratory specializes in incorporating mechanics with cell engineering, biochemistry, biomaterials, and immunology in order to 1) elucidate the role mechanical forces play in regulating seemingly unrelated aspects of tumor progression such as metastasis and immune suppression as well as 2) develop novel immunotherapeutics to treat cancer.

Cancer progression is tightly linked to the ability of malignant cells to exploit the immune system to promote survival. Insight into immune function can therefore be gained from understanding how tumors exploit immunity. Conversely, this interplay makes the concept of harnessing the immune system to combat cancer an intriguing approach. Using an interdisciplinary approach, we aim to develop a novel systems-oriented framework to quantitatively analyze immune function in cancer. This multifaceted methodology to study tumor immunity will not only contribute to fundamental questions regarding how to harness immune response, but will also pave the way for novel engineering approaches to treat cancer such as with vaccines and cell- or molecular-based therapies.

Johnna Temenoff


 

Research Affiliations:

Research Areas:

Research Interests:

Development of novel polymeric biomaterials, regeneration of tendon/ligament, protein delivery for orthopaedic tissue engineering.

The goal of our laboratory is to design polymeric biomaterials for specific orthopaedic applications, including regeneration of tendon/ligament, cartilage and bone. These synthetic and naturally-derived biomaterials are used in conjunction with other biochemical and mechanical stimuli to promote priming of stem cells to express a particular phenotype, as well as deliver biomolecules to promote healing of tissues that have degenerated due to chronic conditions, such as osteoarthritis or overuse injuries.

Manu Platt


 

Research Affiliations:

Research Areas:

Research Interests:

Tissue remodeling, HIV, cardiovascular disease, sickle cell disease strokes, and predictive medicine.

Platt Lab Mission: To fuse engineering, cell biology, and physiology to understand how cells sense, respond, and remodel their immediate mechanical and biochemical environments for repair and regeneration in health and disease, then to translate that knowledge to clinics domestically and internationally to address global health disparities.

Robert Guldberg


 

Research Affiliations:

Research Areas:

Research Interests:

Guldberg’s research interests focus on musculoskeletal growth and development, functional regeneration following traumatic injury, and degenerative diseases, including skeletal fragility and osteoarthritis. His research is supported by the NIH, NSF, DoD, and several biotechnology companies and has resulted in over 150 book chapters and publications. Guldberg is a Fellow of the American Institute for Medical and Biological Engineering (AIMBE) and holds several national leadership positions.

Andrés García


 

Research Affiliations:

Research Areas:

Research Interests:

Dr. García's research centers on cellular and tissue engineering, areas which integrate engineering and biological principles to control cell function in order to restore and/or enhance function in injured or diseased organs. Specifically, his research focuses on fundamental structure-function relationships governing cell-biomaterials interactions for bone and muscle applications. Current projects involve the analysis and manipulation of cell adhesion receptors and their extracellular matrix ligands. For example, a mechanochemical system has been developed to analyze the contributions of receptor binding, clustering, and interactions with other cellular structural proteins to cell adhesion strength.

In another research thrust, bio-inspired surfaces, including micropatterned substrates, are engineered to control cell adhesion in order to direct signaling and cell function. For instance, biomolecular surfaces have been engineered to target specific adhesion receptors to modulate cell signaling and differentiation. These biomolecular strategies are applicable to the development of 3D hybrid scaffolds for enhanced tissue reconstruction,"smart" biomaterials, and cell growth supports. Finally, genetic engineering approaches have been applied to engineer cells that form bone tissue for use in the development of mineralized templates for enhanced bone repair.

Michael Davis


 

Research Affiliations:

Research Areas:

Research Interests:

Cardiac Regeneration, stem cell therapy:

Our laboratory focuses on various aspects of cardiac regeneration and preservation using molecular-based and biomaterials-based approaches to restoring function after cardiac injury.

Jennifer Curtis


 

Research Affiliations:

Research Areas:

Research Interests:

Cell biophysics. Cell mechanics of adhesion, migration and dynamics. Immunophysics and immunoengineering. Hyaluronan glycobiology. Hyaluronan synthase. Physics of tissues. 

The Curtis lab is primarily focused on the physics of cell-cell and cell-extracellular matrix interactions, in particular within the context of glycobiology and immunobiology. Our newest projects focus on questions of collective and single cell migration in vitro and in vivo; immunophage therapy "an immunoengineering approach - that uses combined defense of immune cells plus viruses (phage) to overcome bacterial infections"; and the study of the molecular biophysics and biomaterials applications of the incredible enzyme, hyaluronan synthase.

A few common scientific themes emerge frequently in our projects: biophysics at interfaces, the use of quantitative modeling, collective interactions of cells and/or molecules, cell mechanics, cell motility and adhesion, and in many cases, the role of bulky sugars in facilitating cell integration and rearrangements in tissues.

Pages

Subscribe to RSS - Biomaterials