Georgia Tech School of Materials Science and Engineering

Valeria Milam


 

Research Affiliations:

Research Areas:

Research Interests:

Bio-inspired colloidal assembly for multifunctional drug delivery vehicles and colloidal-based sensing.

Dr. Milam’s current research interests focus on designing and characterizing colloids functionalized with biologically-relevant macromolecules such as oligonucleotides and cellular adhesion molecules. The specific recognition between matching macromolecules such as complementary DNA strand pairs allows for programmable adhesion between either complementary particle surfaces or between complementary particle and matrix interfaces. Using a variety of biocompatible and biodegradable materials as the colloidal substrate, these biocolloids will serve as building blocks to fabricate novel material constructs ranging from stimuli-responsive hybrid materials to therapeutic delivery vehicles.

Seung Soon Jang


 

Research Areas:

Research Interests:

Dr. Jang's research interest is to characterize and design nanoscale systems based on the molecular architecture-property relationship using computations and theories, which are especially relevant to designing new biomaterials for drug delivery and tissue engineering. Currently, he is focusing on 1) NanoBio-mechanics for DNA, lipid bilayer, and hydrogel systems; 2) Molecular interaction of Alzheimer proteins with various small molecules. Dr. Jang is also interested in various topics such as nanoelectronics, nanostructured energy technologies for fuel cell, battery and photovoltaic devices.

Vladimir Tsukruk


 

Research Interests:

Biomaterials and bioinspired materials, bionanocomposites, hybrid nanomaterials, optically active materials, photonic materials, responsive materials, and sensors. 

Blair Brettmann


 

Biography:

Blair Brettmann received her B.S. in Chemical Engineering at the University of Texas at Austin in 2007. She received her Master's in Chemical Engineering Practice from MIT in 2009 following internships at GlaxoSmithKline (Upper Merion, PA) and Mawana Sugar Works (Mawana, India). Blair received her Ph.D. in Chemical Engineering at MIT in 2012 working with the Novartis-MIT Center for Continuous Manufacturing under Prof. Bernhardt Trout. Her research focused on solid-state characterization and application of pharmaceutical formulations prepared by electrospinning. Following her Ph.D., Blair worked as a research engineer for Saint-Gobain Ceramics and Plastics for two years. While at Saint-Gobain she worked on polymer-based wet coatings and dispersions for various applications, including window films, glass fiber mats and architectural fabrics. Later, Blair served as a postdoctoral researcher in the Institute for Molecular Engineering at the University of Chicago with Prof. Matthew Tirrell.

Research Keywords:

Continuous pharmaceutical manufacturing, roll-to-roll coatings and films, electrospinning, polymer science, molecular engineering, surface and interfacial science, charged polymers, biomedical coatings

Research Areas:

Research Interests:

Blair's current research interests focus on rational design of functional advanced materials through understanding of interactions in multicomponent mixtures on the molecular scale, both at equilibrium and during processing. Her research group designs and studies new processing and characterization technologies using both experiments and theory, focusing on linking molecular to micron scale phenomena in complex systems to product performance. Application areas include pharmaceutical product development, renewable bioproducts and polymer composites.

Karl Jacob


 

Biography:

Dr. Karl I. Jacob, a Professor of Materials Science and Engineering with a joint appointment in the G. W. Woodruff School of Mechanical Engineering teaches graduate and undergraduate courses on polymer physics and engineering, rheology, and mechanics of polymeric materials. His graduate work was in the area of numerical analysis of vibrating three-dimensional structures. He came to Georgia Tech from DuPont Corporation in 1995. His initial work at the DuPont Dacron Research Laboratory was in the area of fiber-reinforced composite materials and in the development and modeling of fiber spinning processes. He then moved to the DuPont Central Research and Development Department, where he was involved in molecular modeling, computational chemistry, and diffusion.

Dr. Jacob is a member of the American Academy of Mechanics, the American Society of Mechanical Engineers, the Sigma Xi Research Society, and the Phi Kappa Phi Honor Society.

Research Areas:

Research Interests:

Mechanics of Materials; Phase transformation & clustering, nanoscale modeling such as molecular dynamics and Monte Carlo methods, nanostructured composites, networked polymers, fracture, and drug delivery systems.

Dr. Jacob's research is directed at stress induced phase changes, nanoscale characterization of materials, synthesis of polymeric nanofibers, mechanical behavior of fiber assemblies (particularly related to biological systems and biomimitic systems), nanoparticle reinforced composites, transdermal drug delivery systems, large scale deformation of rubbery (networked) polymers, and nanoscale fracture of materials. The objectives in this work, using theoretical, computational and experimental techniques, is to understand the effect of micro- and nano- structures in the behavior of materials in order to try to design the micro/nano structures for specific materials response.

Dr. Jacob plans are to continue current research interests with a multidisciplinary thrust with more emphasis in bio related areas and to start some work on the dynamic behavior of materials and structures. Graduate students could benefit from the interdisciplinary nature of the work combining classical continuum mechanics with nanoscale analysis for various applications, particularly in the nano and bio areas.

Dr. Jacob has extensive experience in vibrations and stability of structures, mechanics of polymeric materials, behavior of fiber assemblies, stress-induced phase transformation, diffusion, and molecular modeling. His research involves the application of mechanics principles, both theoretical and experimental, in the analysis and design of materials for various applications.

Subscribe to RSS - Georgia Tech School of Materials Science and Engineering