Emory University

Elliot Chaikof


 

Research Affiliations:

Research Areas:

Rebecca Levit


 

Research Affiliations:

Research Areas:

Research Interests:

Cardiovascular diseases are the leading causes of death and disability worldwide. We are dedicated to developing new therapies to help cardiac patients by identifying, testing, and moving new therapies towards clinical use. We study stem cell therapies to prevent heart damage and promote repair. We use biomaterials to increase cell retention, increase efficacy, and target activity.

Brent Keeling


 

Research Interests:

Targeted clinical investigations of adult cardiac surgical sub-populations.

Colleen Coulter


 

Biography:

Dr. Coulter is a Board Certified Pediatric Clinical Specialist through the APTA practicing in the field of pediatrics for 38 years. For the past 28 years, Dr. Coulter has worked alongside orthotists and prosthetists in the Orthotics and Prosthetics Department at Children’s Healthcare of Atlanta. She is the team leader for the Limb Deficiency Program and has taught and lectured on topics relating to development and limb deficiencies in children. Dr. Coulter also serves as the physical therapist in the Cranial Remolding and Scoliosis Programs at Children’s Healthcare of Atlanta The focus of one of her studies is the effect of torticollis on the skull, posture and movement. For the past 8 years, she has joined the Children’s team teaching the MSP&O students at GA Tech and is involved in the clinical rotations of the GA Tech MSO&P students and physical therapy students on clinical affiliations at Children’s. She is an adjunct assistant professor at Emory University Department of Physical Therapy.

Robert Gross


 

Research Affiliations:

Research Areas:

Research Interests:

Neuromodulation using multielecrode arrays, closed loop control theory, and optogenetics for epilepsy and movement disorders. Computational modeling of epilepsy networks for model-based and non-model based feedback control of optogenetic and electrical neuromodulation. Neurorestoration using gene and cell-therapy based approaches for degenerative and injury conditions.

The Translational Neuroengineering Research Lab uses neuromodulation for epilepsy using a combination of the following advanced techniques: 1) Multimicroelectrode electrical stimulation using novel parameters informed by optimization of input/output relationships (both model- and non-model based MIMO) using closed-loop control theory including adaptive learning and machine learning approaches; 2) Optogenetic activation and inhibition using all forms of available channels including step-function opsins. These approaches identify novel brain regions that have more widespread control and targets specific cell types for activation and inhibiton. Closed loop control using multielecrode arrays informs and controls neuromodulation. 3) Hardware independent ‘luminopsins’: novel gene therapy approaches combining bioluminescent proteins with optogenetic channels for hardware independent, widespread and activity-regulatable neuromodulation. We use a combination of in vitro models, animal models (mouse, rat, non-human primate) and human patients undergoing epilepsy and deep brain stimulation surgery as our experimental models.

In addition, the laboratory has developed novel gene therapy vectors for neurorestoration targeting key pivotal proteins regulating axon outgrowth in regenerative situations, including for Parkinson’s disease, spinal cord injury and retinal degeneration.

Hicham Drissi


 

Research Areas:

Research Interests:

Identifying molecular and developmental cues that govern skeletal tissue derived cell growth and differentiation.

Khalid Salaita


 

Research Areas:

Research Interests:

In 2009, Khalid started his own lab at Emory University, where he currently investigates biophysical aspects of receptor-mediated cell signaling. To achieve this goal, his group has pioneered the development of molecular force probes and nano-mechanical actuators that are integrated with living cells. These materials are used to investigate the molecular mechanisms of a number of pathways where piconewton forces are thought to be important. These pathways include the Notch-Delta pathway, T cell receptor activation and the integrin-based focal                                                                                   adhesion pathway.

Pages

Subscribe to RSS - Emory University