Wallace H. Coulter Department of Biomedical Engineering

Nick Willett


 

Research Affiliations:

Research Areas:

Research Interests:

The overall research of the lab focuses on a systems integration approach to musculoskeletal disease and regenerative engineering by applying novel imaging and engineering approaches to mechanistic biology problems. Our current work has three main thrusts: (i) cell and biologic therapies for the healing of large bone and muscle defects, (ii) multi-scale mechanical regulation of bone regeneration, (iii) intra-articular therapeutic delivery for post-traumatic osteoarthritis. Combining backgrounds in mechanical engineering, vascular biology and musculoskeletal tissue regeneration, our research integrates mechanics principles and analytical tools with molecular biology techniques to uniquely address challenges of musculoskeletal disease and regeneration.

Gabe Kwong


 

Research Keywords:

nanomedicine, engineering immunity, biomedical microsystems

Research Affiliations:

Research Areas:

Research Interests:

Human health has been transformed by our collective capacity to engineer immunity — from the pivotal development of the smallpox vaccine to the curative potential of recent cancer immunotherapies. These examples motivate our research program that is conducted at the interface of Engineering and Immunology, and where we develop biomedical technologies and applications that shape a diverse array of immunological systems.

The questions that are central to our exploration include: How do we begin to study an individual's repertoire of well over one billion immune cells when current technologies only allow us to study a handful of cells at a time? What are the biomarkers of immunological health as the body responds to disease and ageing, and how may these indicators trigger clinical decisions? And how can we genetically rewire immune cells to provide them with entirely new functions to better fight complex diseases such as cancer?

To aid in our studies, we use high-throughput technologies such as next-generation sequencing and quantitative mass spectrometry, and pioneer the development of micro- and nanotechnologies in order to achieve our goals. We focus on clinical problems in cancer, infectious diseases and autoimmunity, and ultimately strive to translate key findings into therapies for patients.

Peng Qiu


 

Biography:

Peng Qiu received his B.S. degree from the University of Science and Technology of China, and a Ph.D. degree from the University of Maryland College Park, both in electrical engineering. After spending three years as a postdoctoral fellow in the Center for Cancer Systems Biology at Stanford, and three years as an assistant professor in the Department of Bioinformatics and Computational Biology at UT MD Anderson Cancer Center, he joined the Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University.

Research Keywords:

Bioinformatics and computational biology, machine learning, data integration, progression analysis, single-cell analysis, flow cytometry

Research Interests:

His main research interests are in the area of bioinformatics and computational biology, focusing on machine learning, visualization, signal processing, systems modeling and network analysis.

Francisco Robles


 

Research Affiliations:

Research Areas:

Research Interests:

Biophotonics, microscopy, spectroscopy, interferometry, holography, molecular imaging, non-linear optics

We focus on developing and applying label-free linear and nonlinear optical methods, along with advanced signal processing methods, to gain access to novel forms of functional and molecular contrast for a variety of biomedical applications.

James Dahlman


 

Biography:

James Dahlman is an Assistant Professor in the Georgia Tech BME Department. He studied RNA design and gene editing as a post-doc with Feng Zhang at the Broad Institute, and received his PhD from MIT and Harvard Medical School in 2014, where he studied RNA delivery with Robert Langer and Daniel Anderson.

The Lab for Precision Therapies at Georgia Tech, also called the 'Dahlman Lab', works at the interface of drug delivery, nanotechnology, genomics, and gene editing. James has designed nanoparticles that deliver RNAs to the lung and heart; these nanoparticles have been used by over ten labs across the US to date. He has also developed targeted in vivo combination therapies; nanoparticles deliver multiple therapeutic RNAs at once, in order to manipulate several nodes on a single disease pathway. More recently, he developed a method to quantify the targeting, biodistribution, and pharmacokinetics of dozens to hundreds of distinct nanoparticles at once directly in vivo.

Finally, James uses molecular biology to rationally design the genetic drugs he delivers. He recently reported 'dead'  guide RNAs; these engineered RNAs can be used to simultaneously up- and down-regulate different genes in a single cell using Cas9.

James has won the NSF, NDSEG, NIH OxCam, Whitaker Graduate, and LSRF Fellowships, the Weintraub Graduate Thesis Award, and was recently named a Bayer Young Investigator and Parkinson's Disease Foundation Young Investigator. He has had significant help along the way. Besides having great scientific advisors, James has been lucky to mentor excellent students, including two that were finalists for the Rhodes Scholarship.

Research Keywords:

Drug delivery, nanotechnology, siRNA, miRNA, RNAi, CRISPR-Cas9, sgRNA, RNA design, multigene therapies, gene therapies

Research Affiliations:

Research Areas:

Research Interests:

In the Dahlman Lab, we focus on the interface between nanotechology, molecular biology, and genomics. We design drug delivery vehicles that target RNA and other nucleic acids to cells in the body. We have delivered RNAs to endothelial cells, and have treated heart disease, cancer, inflammation, pulmonary hypertension, emphysema, and even vein graft disease. Because we can deliver RNAs to blood vessels at low doses, sometimes we decide to deliver multiple therapeutic RNAs to the same cell at once. These 'multigene therapies' have been used to treat heart disease and cancer. Why is this important? Most diseases are caused by combinations of genes, not a single gene. We also rationally design the nucleic acids we want to deliver. For example, we re-engineered the Cas9 sgRNA to turn on genes, instead of turning them off. This enabled us to easily turn on gene A and turn off gene B in the same cell.

Pages

Subscribe to RSS - Wallace H. Coulter Department of Biomedical Engineering